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Novel QRS Detection Based on the Adaptive Improved Permutation
Entropy

Nastaran Mansourian, Sadaf Sarafan, Graduate Student Memeber, IEEE , Farah Torkamani-Azar*,
Memeber, IEEE , Tadesse Ghirmai, Senior Memeber, IEEE and Hung Cao*,Senior Memeber, IEEE

Abstract— Detection of the QRS complex is the most
important step in analyzing ECG signals for heart moni-
toring and diagnosis. There have been several QRS-peak
detection methods reported in the literature. Most of these
methods have low performance under noisy conditions. In
this paper, we propose a novel QRS detection algorithm
based on a new Permutation Entropy (PE) method that
we developed and referred to as the Adaptive Improved
Permutation Entropy (AIPE) method. The parameters of
the AIPE method are determined based on the specific
signal properties. Implementing the AIPE method leads to
prominently preserving the QRS complex and eliminating
noises of the ECG signal without smoothing the ECG sig-
nal. Our simulations show that the proposed QRS detection
algorithm is effective and robust under noisy conditions.
The algorithm is validated on the MIT-BIH Noise Stress
Test Database for various SNR values. In addition, we ex-
amined the algorithm’s performance under motion noise
conditions, mimicking a practical scenario. We used the
metrics of sensitivity, positive predictive, and F1 score to
evaluate the performance of our algorithm and compare it
with several other algorithms explained in the literature.
Our investigation shows that the proposed algorithm out-
performs other QRS detection algorithms, including the
popular Pan-Tompkins algorithm.

Index Terms— Adaptive Improved Permutation Entropy,
ECG Analysis, Permutation Entropy, QRS Detection, Signal
Processing.

I. INTRODUCTION

ACCORDING to the World Health Organization (WHO),
cardiovascular diseases (CVD) are the leading cause of

death worldwide, with an estimated 17.5 million deaths per
year [1]. More than 80 percent of CVD deaths are due to heart
attacks and strokes [1]. Thus, continuous heart rate monitoring
is critical for the vulnerable population. Electrocardiogram
(ECG) signals provide valuable information such as heart rate

*Corresponding authors: Farah Torkamani-Azar, Hung Cao.
Nastaran Mansourian is with the Faculty of Electrical En-

gineering, University of Shahid Beheshti, Tehran, Iran (e-mail:
se.mansourian@mail.sbu.ac.ir).

Sadaf Sarafan is with the Department of Electrical Engineering and
Computer Science, University of California, Irvine, CA 92697, USA (e-
mail: ssarafan@uci.edu).

Farah Torkamani-Azar is with the Faculty of Electrical Engi-
neering, University of Shahid Beheshti, Tehran, Iran (e-mail: f-
torkamani@sbu.ac.ir).

Tadesse Ghirmai is with the Division of Engineering and Mathematics,
University of Washington, Bothell Campus, Bothell, WA 98011, USA (e-
mail: tadg@uw.edu).

Hung Cao is with the Department of Electrical Engineering and
Computer Science, University of California, Irvine, CA 92697, USA and
Department of Biomedical Engineering, University of California, Irvine,
CA 92697, USA (e-mail: hungcao@uci.edu).

(HR) and heart rate variation (HRV) for the diagnosis of
CVDs. Furthermore, according to recent research, the COVID-
19 pandemic is associated with a rapid reduction in cardio-
vascular diagnostic procedures across the world [2]. Thus,
in unique scenarios such as the current global COVID-19
pandemic, the availability of distanced care and mobile health
(m-Health) are critical. As the m-healthcare field develops,
mobile ECG devices will become more popular, beckoning
novel approaches to assess HR from ECG in practical scenar-
ios in daily life.

ECG signals comprise distinct components: P waves, QRS
complexes, and T waves. ECG assessment for diagnosis in-
cludes determining heart rate (HR) which is usually achieved
by detecting the QRS complex. ECG recordings are commonly
contaminated with artifacts such as power-line interference,
baseline wander, motion artifacts, among others. In a strong
noise setting (low signal to noise ratios - SNR), the detection
of QRS complexes could be very challenging [3]. Various
techniques have been developed for QRS complex detection,
including methods based on the neural networks [4], [5], the
wavelet transforms [6], [7], digital filter and filter banks [8],
[9] and Hilbert transforms [10], [11]. The neural networks
provide remarkable accuracy improvement, however these
methods seem to be characterized by mathematical complexity
[12]. By using the wavelet transform, good detection ratios
can be obtained. Nevertheless, the high required time and
memory make it impossible to use this method for real-time
applications [13]. Most algorithms based on digital filters are
sensitive to the presence of noise [14], [15]. Although Hilbert
transforms methods perform greatly, the QRS detection would
be challenging during low-amplitude R-wave and ischemic
heart conditions [16]. However, all these methods have some
drawbacks, such as having high computation complexity, large
memory requirement, and particularly low accuracy due to low
SNR and motion noise sensitivity [17].

Permutation Entropy (PE) is a quantitative tool that mea-
sures system complexity. Although its initial classical method
is deprecated, but the other ordinary permutation entropy
approaches are now being used [18]. In this paper, we propose
and develop a novel permutation entropy-based algorithm for
QRS complex detection from ECG signals. The proposed
algorithm is based on a new method known as the Adaptive
Improved Permutation Entropy (AIPE). We have developed
this novel method by extending the Improved Permutation
Entropy (IPE) by addressing its shortcomings to detect signals
of sharp slope such as the QRS complex [19]. We have
performed investigations to demonstrate that the proposed
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algorithm outperforms the Pan-Tompkins algorithm which is
the most popular QRS detection method, particularly with
low-SNR signals. In the following, PE theorem is defined
in section (II), firstly. Then, AIPE as a modified version of
PE is presented in section (III), and in residual sections, the
implementation and experiments are explained.

II. AN OVERVIEW OF PERMUTATION ENTROPY

When analyzing a system, the determination of the com-
plexity of its time series signal plays an important role in un-
derstanding its characteristics [20]. Entropy is among the most
popular complexity measurement methods for signal analysis.
It reveals the irregularities and uncertainties of time series
signals [21]. To date, various entropy measurement approaches
have been proposed, including permutation entropy (PE) [22],
sample entropy [23], approximate entropy [23] and entropy
of symbolic dynamics (SymDyn) [24]. Compared to all the
other entropy algorithms, PE is the most popular method
because it is conceptually simple and computationally fast. In
addition, PE can be applied to all types of signals, including
deterministic, stationary and non-stationary stochastic, and
chaotic signals [25].

First introduced in 2002 by Bandt and Pompe, PE combines
symbolic patterns and concepts of entropy to create a new
method for complexity measurement [22]. To explain the PE
algorithm, let us consider a time series signal denoted as

x = {x(i)}Ni=1 (1)

where N is the length of the time series. The first step in
calculating the permutation pattern is selecting the embedding
dimension m and the time delay τ for the time series. The
m× j reconstruction matrix for the signal x is then given by

X =


x(1) · · · x(j)

x(1 + τ) · · · x(j + τ)
...

. . .
...

x(1 + (m− 1)τ) · · · x(j + (m− 1)τ)

 (2)

where j = N−τ(m−1) denotes the total number of columns
of the reconstruction matrix. We refer to the columns of the
reconstruction matrix as reconstruction vectors, and the kth

reconstruction vector is denoted by

Xk = [x(k), x(k + τ), ..., x(k + τ(m− 1))]⊤ (3)

Without loss of generality, we assume τ = 1. The first
step in defining the kth permutation pattern is to arrange the
reconstruction vector Xk in descending order as

x(k+(l1−1)) ≤ x(k+(l2−1)) ≤ ... ≤ x(k+(lm−1)) (4)

where li is an index that denotes the location in the column Xk

of the ith element of the vector arranged in descending order.
For example, suppose z = {5, 1, 8}⊤ is one of the columns of
(2). After arranging z in a descending order, the first element of
the ordered vector is the second element of z, and the second
element of the ordered vector is the first element of z and the
third element of the ordered vector is the third element of z.
Thus, we write the indices as l1 = 2, l2 = 1 and l3 = 3. It
is important to note that if two elements of the reconstruction

vector are equal, x(k+(lq1−1)) = x(k+(lq2−1)), we consider
x(k+ (lq1 − 1)) < x(k+ (lq2 − 1)) when lq1 < lq2. For each
reconstruction vector Xk, we assign a vector of permutation
pattern π(k) whose elements are the index of reconstruction
vector li for i = 1, 2, ...,m as follows,

π(k) = [l1, l2, ..., lm]
⊤ (5)

Based on permutation principle, there are m! different
possible permutation pattern vectors attributed to Xk. The
second step in the PE calculation is the estimation of entropy.
We denote the probability of the permutation pattern vector of
πi as pi, where 1 ≤ i ≤ m!, computed from the relative
frequency of occurrence of the pattern in the permutation
matrix. The entropy is calculated according to Shannon’s rule
as [26],

HPE(m) =
−∑h

i=1[pi × ln(pi)]

ln(m!)
(6)

where h ≤ m! and ln(m!) represents the maximum value of
HPE(m), which is in the range of 0 ≤ HPE(m) ≤ 1. Despite
the significant success of Bandt‘s PE method in various fields,
it has serious limitations to be applicable in a wide range of
applications. Some of these drawbacks are the following:

1) The first definition of PE, which Bandt and Pompe
introduced, is based on single time scale signals. Hence,
it is ineffective for complex systems with multiple time
scale signals [27].

2) The original PE algorithm was proposed for continuous-
time signals in which the incidence of equal values is
rare and, hence, can be ignored. But, in most practical
applications, we deal with digitized signals. Depending
on the amplitude resolution, such signals are likely to
have more similar or equal values, and if not properly
accounted for, can introduce bias in PE estimation [28],
[29]. E.g., according to the original PE method, the two
vectors z1 = {1, 2, 3, 4}⊤ and z2 = {1, 2, 2, 2}⊤, are
both transformed to the same pattern π1 ={0, 1, 2, 3}⊤,
although z1 is quite ascending compared to z2.

3) Amplitude and slope information of signals were ig-
nored in the initial definition of PE [30]–[33]. For
example, the same ordinal pattern π1 = {0, 1, 2}⊤ is
assigned to all symbols shown in Fig. 1.

4) The PE method is susceptible to noise because it assigns
two different ordinal patterns to signals such as z1 =
{1, 1.001, 1.02}⊤ and z2 = {1.001, 1.02, 1}⊤. This
characteristic of the PE method renders it useless es-
pecially for bio-signals that acquired in real-life settings
because they possess a variety of noises and interference,
including motion artifacts [34], [35].

All these drawbacks limit the use of PE. Consequently, there
have been efforts coming up with modified methods that
address the limitations of the original PE [36]. For example, to
solve the single time scale limitation of the original PE, Zunino
et al. proposed a scale-dependent scheme by generalizing
the computation of the PE to different embedding delays
[37]. Similarly, Aziz presented another method, known as
multiscale PE (MPE), which estimates the PE in different time
scales. This is accomplished by introducing a time-scale factor
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(a) (b)
Fig. 1. π1 corresponds to different modes for m = 3. (a) π1 =
{0, 1, 2} pattern. (b) Other possible situations.

and dividing the time series into several coarse-grained time
series [38]. The weighted-PE (WPE) [30], proposed in 2013,
addressed the original PE limitation of discarding amplitude
and slope information of signals by introducing weight to each
ordinal pattern. Another method known as the amplitude-aware
PE (AAPE) was also proposed in 2013 [32] to address the
same limitation.

Depending on amplitude resolution, the way equal values
are assigned ordinal patterns is the most serious limitation of
the original PE method because it introduces bias in estimating
the entropy. To address this issue, Bian et al. defined a
modified permutation entropy (mPE) [39] which assigns the
same symbols to equal values in the pattern vector. Despite
its solution to the issue of equal values, mPE has other
drawbacks. First, although White Gaussian Noise (WGN)
is completely random, mPE does not assign the maximum
entropy value to WGN. Moreover, it does not incorporate
amplitude information in computing entropy.

III. METHOD

Before delving into the QRS detection algorithm, in this
section, we explain the AIPE method, which is the basis for
the algorithm. The AIPE algorithm can be seen as an extension
of the Improved Permutation Entropy (IPE) method [19].

A. Improved Permutation Entropy

The determination of the permutation patterns of the IPE al-
gorithm involves quantization of the time series signal values.
Consider a quantization function Q(x) as shown in (7),

Q(xi) = l , xmin + l∆ ≤ x(i) < xmin + (l + 1)∆

∆ = (xmax − xmin)/L
(7)

where xmin and xmax represent the minimum and maximum
values of the time series x = {x(i)}Ni=1, respectively. The
number of quantization levels is denoted by L, and ∆ is
the spacing between the quantization levels. The quantization
Q(x) function converts each value of the time series x =
{x(i)}Ni=1 into an integer digit l whose value is 0 ≤ l ≤ L−1.
To determine the permutation patterns, the first step is to
digitize the first row of the reconstruction matrix X(1, :) by
Q(x) function and place it in the first row of the permutation
matrix Π(1, :). Afterwards other rows of the permutation
matrix Π(n, :), where 2 ≤ n ≤ m are obtained from (8),

based on the first row of reconstruction matrix, X(1, :).

Π(n, k) = Π(1, k) +

⌊
X(n, k)−X(1, k)

∆

⌋
1 ≤ k ≤ N − τ(m− 1) , 2 ≤ n ≤ m,

(8)

where ⌊·⌋ is the floor operator. Each column of the permutation
matrix Π corresponds to one of the possible permutation pat-
terns πi, where 1 ≤ i ≤ Lm. Once the improved permutation
patterns are defined, the entropy is computed using

HIPE(m) =
−∑h

i=1[pi × ln(pi)]

ln(Lm)
(9)

where h ≤ Lm, ln(Lm) shows the maximum value of HIPE

and pi is the probability of pattern πi, which is computed from
the relative frequency occurrence of πi in Π. However, IPE
solves the equal values limitation of the original PE method
and incorporates amplitude and signal fluctuation information
in the computation of entropy, but it has the following short-
comings: (I) Digitization levels of the amplitude, and slope
information are not independent of each other; (II) WGN is
not assigned the maximum value of IPE, there is a slight
deviation as shown in Fig. 2(a). Since white Gaussian noise is
a completely random signal, the WGN must get a maximum
absolute value according to the entropy definition. (III) Signal
fluctuations are not independently taken into account.

B. Adaptive Improved Permutation Entropy

We propose a novel method, AIPE, that like the other
PE approaches, its computation has two parts: (I) pattern
definition; (II) entropy calculation. AIPE defines the first row
of the permutation matrix Π(1, :) in the same way as the IPE,
except that a new parameter thslope is added to make the slope
information independent of the amplitude information. The
parameter thslope is determined from the slope of the signal.

If the absolute difference of the values of two consecutive
samples of the vector X(:, k) is less than thslope, the two
samples are assigned equal digital values; otherwise, a digital
value of the second sample is determined by adding the integer
parts of (X(n, k)−X(n− 1, k))/thslope to the digital value
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Fig. 2. (a) Inability of IPE to assign maximum entropy value to WGN.
For τ = 1 and m = 4. (b) Assigning maximum AIPE value to WGN.
For m = 4, L = 3 and τ = 1.



iv IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

of the first sample as:

Π(n, k) = Π(n− 1, k) + sgn(
X(n, k)−X(n− 1, k)

thslope
)×⌊ |X(n, k)−X(n− 1, k)|

thslope

⌋
1 ≤ k ≤ N − τ(m− 1) and 2 ≤ n ≤ m.

(10)
where sgn(.) represents the sign function and sgn(w)⌊|w|⌋
shows the integer part of w.

To illustrate the difference between IPE and AIPE permu-
tation pattern assignments, let us take the vector X(:, z1) =
{1.2, 0, 1.6, 4}⊤ as an example, where m = 4. Assuming
L = 4, the permutation pattern assignment by IPE is Π(:
, z1) = {1, 0, 1, 3}⊤. However, the permutation pattern of
AIPE depends on the parameter thslope whose value is based
on signal slope with accounting for signal fluctuations. For
example using thslope = 0.5, the AIPE permutation pattern of
the vector X(:, z1) is Π(:, z1) = {1,−1, 2, 6}⊤, whereas for
thslope = 2, the AIPE permutation pattern of X(:, z1) becomes
Π(:, z1) = {1, 1, 1, 2}⊤.

It is also worth mentioning that AIPE assigns the maximum
entropy value to WGN for appropriately chosen thslope even
for small amounts of L. Figure 2(b) shows the plot of the
AIPE entropy of WGN versus thslope for m = 4, L = 3,
τ = 1. As seen in the figure, the AIPE entropy is the largest
possible value of 1 for a range of the thslope values.

To summarize the discussion of the generation of the AIPE
permutation patterns, we recall that a time series signal is first
mapped to a reconstruction matrix with j columns referred
to as reconstruction vectors. A permutation pattern π(k) is
determined for each of the reconstruction vector Xk to make
up the permutation matrix Π. For a given m and L, the
number of possible permutation patterns πi is 1 ≤ i ≤
max{L, d}m where d = ⌊(xmax − xmin)/thslope⌋. After
finding the probability for each permutation pattern, pi, which
is determined from the relative frequency of occurrence of the
patterns in Π, the normalized AIPE entropy is computed as:

HAIPE(m) =
−∑h

i=1[pi × ln(pi)]

ln(max{d, L}m)
(11)

where h ≤ max{d, L}m. We note that the maximum value of
HAIPE(m) is obtained when x = {x(i)}Ni=1 has a uniform
distribution.

IV. IMPLEMENTATION

Here, QRS complex detection based on the proposed AIPE
method is presented. After applying the AIPE method to an
ECG signal, we preserve the QRS complex and eliminate all
other parts of the signal, including noise. Then, Q, R, and
S waveforms are identified based on amplitude to detect the
QRS complex. Before this, it is necessary to pre-process the
signal to remove undesired components.

A. ECG Pre-processing
A wide range of noise sources affects a recorded ECG

signal, including external electrical interferences (higher fre-
quencies), muscular activity or breathing (lower frequencies)

[40]–[42]. The low-frequency noise is more pronounced when
the subject is exercising. Baseline wander at lower than 1Hz
[43] is removed by using a second-order zero-phase low-pass
filter with a cut-off frequency of 1Hz. The output of the low-
pass filter is the estimate of the baseline wander, which is
subtracted from the ECG signal to obtain the pre-processed
ECG signal [44], [45].

B. Applying AIPE to ECG signal
When the AIPE method is applied to the pre-processed

ECG signal, it keeps the QRS complex intact while removing
all the undesired parts of the signal. The AIPE method
exploits the high amplitude and steep slope of the time-domain
characteristics of the QRS complex to extract it from the noise
without scaling down the R-peak. It is important to note that
if instead, a low-pass filter is used to remove the noise of
the ECG signal, it is challenging to find a suitable cut-off
frequency that does not smooth out and affect the morphology
of the ECG wave. Below, we provide details of the multiscale
AIPE method that removes the undesired features of an ECG
signal.

1) Set AIPE Parameters: The first step in implementing the
AIPE method is determining a few important parameters.

(I) We should determine the parameter thslope that repre-
sents the threshold of the slope of the QRS complex of the
signal. The QRS complex has a high slope, which is a unique
feature that helps in its detection as well as the elimination
of the other undesired features of the ECG signal. Suppose x
and x′ denote the first two seconds of the pre-processed ECG
signal and its derivative,

x = [x(1), x(2), ..., x(2fs)] (12)

The maximum amplitude of vector x is denoted by

max(x) = x(n). (13)

where n shows the position of maximum amplitude of x.
Assuming the width of a healthy QRS is 0.1fs, we denote
the subsequence of the two-second-long pre-processed ECG
signal that consists of the QRS complex as (14)

xQRS = [x(n− ⌊0.05× fs⌋), ...x(n), ..., x(n+ ⌊0.05× fs⌋)]
(14)

Finally, we use the following closed-form expressions to
compute thslope

thslope =
√

|x′
QRS |22 (15)

where |.|2 represents norm of the signal with order two.
(II) The number of quantization levels used to digitize the
amplitude of the signal is set to L = 5; (III) We select
the embedding dimension m = 3. Recall that Bandt and
Pompe suggested the embedding dimension to be between
3 ≤ m ≤ 7; (IV) We set τ = 1, a value that commonly
selected to maintain the signal structure; (V) Since the regular
QRS complex duration is 30-100 ms [46], the subsequence
length used to calculate the multiscale AIPE is recommended
to be equal to half of the width of the QRS complex length. In
this study, we select the subsequence length s = ⌊0.05× fs⌋.



NOVEL QRS DETECTION BASED ON THE ADAPTIVE IMPROVED PERMUTATION ENTROPY v

2) AIPE Implementation: To implement the multiscale AIPE
method with the parameters specified in the previous section,
we follow the steps outlined below:

1) The pre-processed ECG signal is divided into subse-
quences of length s, and each consecutive subsequence
overlaps by s − 1 samples resulting in a total of N −
(s − 1) subsequences. We note that each subsequence
with length s generates a single entropy number.

2) Each subsequence determined in the previous step is
mapped to a reconstruction matrix X. Since m = 3 and
τ = 1, as specified in the last subsection, the dimension
of the matrix X is equal to 3× (s− 2).

X(k) =

x(k + 1) · · · x(k + s− 2)
x(k + 2) · · · x(k + s− 1)
x(k + 3) · · · x(k + s)

 (16)

Where 0 ≤ k ≤ N − (s− 2)− 2.
3) The first row of matrix X(k) is mapped to the first row

of the permutation matrix Π(k) of the kth subsequence
using (7). It should be noted that since a QRS complex
with a negative R-peak indicates a reversal of the ECG
recording, the Q(·) function is performed on the absolute
value of the pre-processed ECG signal. That means
the maximum and minimum values of the ECG signal
are computed based on the absolute values of the pre-
processed ECG signal.

4) The other elements of each column of the matrix Π(k)

are computed using (10). These values represent the in-
teger part of the difference between consecutive samples
of the ECG signal normalized by the thslope value.

5) Finally, an entropy value is computed for each Π(k)

using (11).
Recall that the first row of the permutation matrix Π is
obtained by quantizing consecutive samples of the Q of the
signal whose length is selected to be small, s = ⌊0.05×fs⌋, to
consider only small-scale changes. As a result, if the variation
in a subsequence is mainly due to noise, since the amplitude
does not change much, the elements of the first row of the
corresponding Π are generally equal. Furthermore, the other
rows of Π of such a subsequence would be equal to the first
row because the change in consecutive samples of the signal
is almost less than thslope. Consequently, for subsequence
varying due to noise, all the columns of its corresponding
permutation matrix are equal, and thus, its entropy is equal
to zero. However, if a subsequence includes samples from the
QRS complex, the first row of the matrix Π takes different
values because the QRS amplitudes change rapidly. Moreover,
since the slope of the QRS complex is sharp, the other
elements of each column of Π are not equal to the first
element of the corresponding column, and also the values of
each column of Π are different. Therefore, unlike the noise
subsequence, the entropy of a QRS subsequence is non-zero.

After implementing the above steps for each sub-sequence
s, the multiscale entropy length, referred to as the AIPE
sequence, equals N − (s− 1), which is s− 1 samples shorter
than the length of the pre-processed ECG signal. Zero padding
is applied at the beginning and end of the AIPE sequence so
that its length equals the ECG signal.
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Fig. 3. The importance of defining the thslope independently for
detecting QRS complex. (a) Tape 203 of MITDB modified by motion
noise. (b) AIPE signal of tape 203 of MITDB with the above-mentioned
parameters. (c) IPE processed signal of tape 203 of MITDB with L = 5.
(d) IPE processed signal of tape 203 of MITDB with L = ⌊thslope⌋.

3) Detection: Once the AIPE sequence is obtained, it is mul-
tiplied by the pre-processed ECG signal to generate the AIPE
processed signal, which preserves only the QRS complexes
and completely suppresses the rest of the signal by setting
it to zero, even when the signal-to-noise ratio (SNR) of the
recorded ECG is low. Fig. 3(a) shows the pre-processed ECG
signal obtained from tape 203 of the MIT-BIH Arrhythmia
database (MITDB) modified with motion noise artifact, and
Fig. 3(b) depicts the result after the signal of Fig. 3(a) is
AIPE processed by setting L = 5 and thslope =

√
|x′

QRS |22
which suppresses noise and other parts of ECG signal except
QRS complex. Furthermore, Fig. 3(c) and Fig. 3(d) display
the outputs of IPE processing of the signal of Fig. 3(a)
using two different values of L, L = 5 and L = ⌊thslope⌋,
respectively. Both figures highlight the importance of defining
a slope parameter, such as thslope defined in AIPE method,
independent of L. As in the case of the IPE method, where no
slope parameter is specified, if the value of L is set high, ∆
will be small, and all parts of the ECG signal whose slope is
greater than ∆ would appear as QRS complexes. On the other
hand, if ∆ is set high, L will be small, and the first row of
the matrix Π for noisy subsequence would not remain fixed,
and the noise would not be suppressed in the processing.
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C. Decision
Once the AIPE processed signal is obtained, the next step

is to identify the R-peaks of the signal. A robust algorithm for
determining the R-peaks is essential, especially for low SNR
signals where noise with high amplitude and steep slope can
be incorrectly detected as R-peak. We use a decision method
similar to the Pan-Tompkins algorithm to choose the R-peaks.
The identification of the R-peaks involves initial setting and
periodic adjusting of the amplitude and R-peak to R-peak (R-
R) interval thresholds.

1) Adjusting Amplitude Thresholds: Two amplitude thresh-
olds are set to ensure the R-peaks are selected correctly.
The highest amplitude threshold, denoted as thRpeak, is first
used, and a peak whose amplitude greater than thRpeak

is considered as R-peak to finding the corresponding QRS
complex. However, if no QRS is identified in a specified time
interval, 1.66 times the average R-peak to R-peak interval,
the peaks whose amplitude greater than the lowest threshold,
denoted thnoise, will be examined by a search-back technique.
It should be noted that any peak whose amplitude is less than
thnoise is definitely noise.

Initially, the threshold values are determined as follows.
Suppose y denotes the first two-second subsequence of the
AIPE processed signal, and n denotes the position where y
gets its maximum value, the values of thRpeak and thnoise are
calculated as shown by equations (17) and (18), respectively,

thRpeak =
y(n)

3
(17)

thnoise =

∑2×fs
i=1 y(i)

4× fs
(18)

The amplitude thresholds are adjusted continuously based on
the past R-peaks and noise peaks. Suppose PEAK denotes the
amplitude of the R-peaks, and NOISE denotes the amplitude
of the noise peaks. After detecting at least three R-peaks and
noise peaks, the thresholds are updated as follows

thRpeak = 0.875× thRpeak + 0.125×
PEAKq−2 + PEAKq−1 + PEAKq

3

(19)

thnoise = 0.875× thnoise + 0.125×
NOISEl−2 +NOISEl−1 +NOISEl

3

(20)

where q and l are the indices of the R-peak and noise peaks
detected.

2) Adjusting the average R-R interval: Like the Pan-
Tompkins algorithm [8], the average R-R interval is estimated
by computing the average of the most recent eight detected
R-R intervals,

RRave = 0.125× (RRq−7 +RRq−6 + ...+RRq). (21)

Estimating the average R-R intervals helps define the interval
over which to search the R-peaks. If no peak greater than
thRpeak threshold is detected in the interval of 1.66×RRave,
we use the lowest threshold thnoise to search R-peak whose
amplitude is between thRpeak and thnoise. In this case, if
the detected peak is larger than the average of the three most

recent determined peaks, it is considered the R-peak. It should
be noted that since the amplitude of the AIPE processed
signal is a function of the amplitude and slope of the original
ECG signal, it is likely that the selected R-peak is a T-wave.
Therefore, if the R-R interval between two consecutive peaks
is less than 360 ms, it should be examined by its amplitude. If
the selected R-peak amplitude is less than half of the average
of the two most recent detected peaks, it is considered noise
(Fig. 4). Also, it is worth noting that the minimum R-R interval
must be greater than 200 ms.

V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Data for Testing
1) MIT-BIH Noise Stress Test Database: We validated our

algorithm using ECG recordings obtained from the MIT-BIH
Noise Stress Test Database (NSTDB) [47]. This database
includes twelve half-hour ECG recordings and three half-hour
noise signals of typical ambulatory ECG recordings, such as
baseline wander, muscle artifact, and electrode motion artifact.
The NSTDB noisy recordings are created by adding the noise
signals to the clean recordings from tape numbers 118 and 119
of MIT-BIH Arrhythmia Database [48]. The first 5 minutes
of each record are left clean, but a noise signal is added on
two-minute segments of the recordings alternating with two-
minute of the clean signal. The sampling frequency and bit
resolution of these signals were set to 360 samples per second
and 11 bits resolution over a 10-mV amplitude range. The
noisy recordings have SNR ranging from -6 to 24 dB.

2) Modified Signals with Motion Artifacts Added: To evaluate
our algorithm under motion noise conditions, we added a real
motion artifact to the clean ECG signals of the MIT-BIH
Arrhythmia database (MITDB) [48]. The real motion artifact
was extracted, using the EKF denoising method, from ECG
signals recorded during physical activities such as walking
[49]. When adding noise to the ECG signal, applying ampli-
tude normalization is essential, and before adding the motion
noise, we normalized the ECG signal to -1 V to 1 V.

B. Comparison Criteria
We use the evaluation metrics Sensitivity, Positive

predictive and F1 to compare our algorithm with other
methods. Sensitivity shows the ability of the algorithm to
detect QRS complexes, and it is given by

Se =
TP

TP + FN
(22)

Fig. 4. QRS detection steps using AIPE algorithm.
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where TP denotes True Positive, the number of correctly
detected true QRS complexes, and FN denotes False Negative,
which is the number of QRS complexes not detected. The
Positive predictive (+P) is a ratio that shows how many of
the detected QRS complexes are actually true QRS complexes,
and it is given by

+P =
TP

TP + FP
(23)

where FP denotes False Positive which represents the num-
ber of detected QRS complexes that are not actually QRS
complexes. The F1 considers both FP and FN indicators. In
other words, it is a harmonic mean of FN and FP. Out of the
three metrics, F1 is the best metric because its value doesn’t
change considerably if an indicator improves at the expense
of the others. F1 is defined by,

F1 =
TP

TP + 1
2 (FP + FN)

. (24)

C. Results

To investigate the performance of the proposed algorithms,
we conducted multiple experiments. In the first experiment,
we run our algorithm using the recorded signal number 118
from NSTDB with varying SNR from -6 to 24 dB. Also, for
comparison, we implemented and run the Pan-Tompkins [8],
Chen moving average [50], combined adaptive threshold [51]
and EMD [52] algorithms on the same recorded signal. As well
as, to compare the effect of IPE and AIPE in QRS detection,
we implemented an IPE-based QRS detection algorithm. Fig.
5 depicts the performances F1, Se, and +P of the proposed
algorithm and the other algorithms after applying a signal of
different SNR levels. As seen in Fig. 5(a), the proposed AIPE
algorithm achieves the highest F1 of all the other methods
at all SNR levels. We note that the gain of our algorithm
in F1 compared to the other methods is significant at low
SNR levels. Also, Fig. 5(b) depicts that the proposed method
provides higher Se than the other methods. Similarly, the plot
of +P , Fig. 5(c) shows that our algorithm exhibits better
performance overall than the other methods. So, generally,
we note that the gain in performance of our algorithm over
the other methods is significant and more robust at low SNR
levels. Furthermore, we conducted an experiment to evaluate
the performance of the proposed algorithm under the motion
noise conditions. In our experiment, we used the MIT-BIH
Arrhythmia database (MITDB) data by adding it to the real
motion artifacts. The resulting signal had SNR levels that
ranged from −11.5202 to 8.8693. Table I shows in details
the data used in this experiment with our algorithm. Table
II shows the performance of the various algorithms under
motion noise conditions, also. The results shown in the table
are the average F1, Se, and +P over a range of the SNR
levels. The proposed algorithm with average F1 = 95.83%,
Se = 96.71%, and +P = 95.02% outperforms all the other
algorithm, including the popular the Pan-Tompkin algorithm.
We also tested the algorithms using the clean signals from

the MIT-BIH Arrhythmia database (MITDB) with no noise
added. Table III shows in details the raw data used in this
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Fig. 5. The AIPE and some other algorithms’ comparison applies
to data 118 with varying SNRs from -6dB to 24dB. (a) F1 metric
comparison. (b)Se metric comparison. (c) +P metric Comparison.

experiment with our algorithm. In the sequel, Table IV shows
the performance result of the various algorithms. The proposed
algorithm achieves average F1 = 95.83%, Se = 96.71%, and
+P = 95.02%. Although not as much as in the case of
noisy conditions, the proposed algorithm outperforms the other
algorithms when no noise is added.

VI. CONCLUSION

In this paper, we have proposed a novel QRS detection
algorithm. The algorithm is based on the new permutation
entropy method we developed. Through simulations, we have
shown that the proposed algorithm is reliable and effective
and outperforms several such algorithms, including the pop-
ular Pan-Tompkin algorithm. Most importantly, the proposed
algorithm is robust under noisy conditions, including motion
noise, and shows a significant performance advantage over the
other algorithms under such conditions. Furthermore, due to its
computational simplicity, the proposed algorithms is suitable
for implementation in wearable ECG monitoring devices. In
the future, we will implement the algorithm in such a platform.
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